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LETTER TO THE EDITOR 

Symmetries for certain coupled nonlinear Schrodinger 
equations 

C Sophocleous 
Department of Mathematics and Statistics, University of Cyprus, Nicosia, Po Box 537, Cyprus 

Received 22 March 1994 

Abstract In this letter generalized symmetries are sought for certain coupled nonlinear 
Schrodinger equations. It is shown that d1 Lie-Brklund symmetries but one are equivalent to 
Lie paint symmetries. 

1. Introduction 

We consider the coupled nonlinear Schrodinger equations (CNLS) 

Fl : 

F2 : 

iu, +U,, + u2U + huui +au + p u  = 0 
iu, +U,, + u2U +huuU --U +f lu  = 0 

(1) 

where t and i denote the conjugates of the dependent variables U and U, respectively, and 
the subscripts denote derivatives with respect to the indicated variables. Many descriptions 
of two nonlinearly coupled modulated wavetrains, particularly in fibre optics lead to such 
a system of nonlinear partial differential equations. The dependent variables U(X, t )  and 
u ( x ,  t )  are two complex mode amplitudes in a birefringent fibre, while h,  a and p are real 
constants. It is found [I] that equations (1) are completely integrable in the case where 
a = 0 = 0 and h = 1. For this Manakov [Z] derived explicit soliton solutions. 

The technology of optical fibres for long distance communication and signal processing 
has developed rapidly. A large number of CNLS systems have arisen and been examined 
analytically and numerically. The system (1) has been investigated numerically by Trill0 et 
nl [3]. In this paper we search for generalized (LieBacHund) transformations of the form 

x ’ = x  t‘ = t 

(2) 

where U; = a’u/ax‘ (i = 1,2,3,4, . . .), and similarly for U ; ,  ui and Si, which leave the 
system (1) invariant. Clearly, from transformations (2) we have U’ = U + GV + a(@) and 
i’ = 6 + c$ +a(<’). Such transformations include all Lie groups of point transformatiofis 
of the form 

_ _  _ _  
u ’ = u + E ) 7 ( X , t , U , u l , U 2  ,... U,UI ,... v,u1, ... u,u1,... ) + 0 ( € 2 )  

U’ = V + E P ( X ,  t ,  U , U I , u z .  ... U, U,, ... U, U,, ... U, U,, ...) + o ( 2 )  - ,  - _ _  

x‘ = x + E X @ ,  t ) -+  o ( 2 )  
f’ = t + ET@) + o ( 2 )  
u ’ = u + E U ( X , t , U , U , u , i ) + 0 ( € 2 )  

U’ = U + €V(X,  t .  U ,  8,  U, i) + 0,(€2). 

(3) 
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In fact, in many cases the transformations of the form (2) obtained are equivalent to 
transformations of the form (3). A generalized symmelry which is not equivalent to point 
transformation is called proper Lie-Blicklund symmetry. The equivalency decomposition 
[4] which connect the two forms of transfonnations is given by 

q = U -u,X -uiT 
p = v -  v,X - u ~ T  (4) 

The constants 01 and p in the system (1) can both be taken to be zero or non-zero or 
either of the two to be zero. In all c.ases the resulting CNLS equations have a number of 
applications in the study of optical fibres. We shall refer to these CNLs equations as CNLS(A) 
when 01f 0 and p # 0, CNLS(B) when 01 # 0 and p = 0, CNLS(C) when 01 = 0 and fl  # 0 
and CNLS(D) when 01 = f i  = 0. 

In the following analysis we omit all heavy calculations which have been greatly 
facilitated by the computer algebraic package REDUCE [5]. 

2. Symmetries 

A symmetry of CNLS (1) of the form (2) satisfies 

r(z)F, = 0 r(2)F2 = o (5) 
where is the second extended infinitesimal generator and is given by the formula 

where D, and D, are the total derivatives with respect to x and t ,  respectively. The 
system (5) are two identities which involve the variables x ,  t ,  U, U, G, 17 and their derivatives. 
Equations (1) can be solved for U[ and ut, respectively, to give 

ut = i(uzx +U% + huu5 +au + p u )  
U, = i(uxx + uz5 + huui  - 01u + pu) . 

Employment of (6) enables us to evaluate all derivatives with respect to t in terms of 
U ,  U, U ,  5 and their derivatives with respect to n. That is, if we continually differentiate 
(6) we obtain a number of differential consequences which are used to eliminate 
u I x .  ut?. utXX. uItx, etc. Hence, identities (5) take the form _ _  
El(& t ,  U, U, U ,  U, 111,112. U), ..., UI, UZ, u3, ..., U l ,  Uz,  c3, ..., a,, 52, 53, ... ) = 0 _ _  ~~ _ _ _  (7) Ez(x ,  t ,  U, U, U ,  U, X I ,  UZ. 83,  ..., VI. vi. ~ 3 ,  ..., u i r  UZ. ~ 3 ,  ..., ai,az,  53, ... ) = 0. 
The above form explains why we have restricted the generators q and g not to depend on 
derivatives with respect to t .  

The identities El and EZ are polynomials in the indicated variables which 
we regard as independent. That is, identities (7) must hold for all values of 
x ,  t ,  U, U ,  G, B, UT. uz, ug, . . . . Setting, successively, the coefficients of these variables 
(including powers and products between them) equal to zero we obtain a large number 
of partial differential equations in q and which need to be satisfied. Therefore these 
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equations enable us to derive the generators q and 
Backlund transformations. 

and consequently the desired Lie- 

We split the following analysis into two exclusive cases: (i) h # 1 and (ii) h = 1. 

Case (i). Without presenting any calculations, we state that both of the generators q and 
g in transformations (2) are independent of terms U;, E;, U;. fit where i 2 3. Hence, in 
this case the symmetries admitted by the Cms (1) are not proper Lie-Backlund symmetries 
which means that they me equivalent to Lie point symmetries. Using the decomposition (4) 
we may write the transformations in the form (3). 

For equations CNLS(A) and CNLS(C) (that is, p # 0) we get 

X = Zc3t + c4 T = c2 U = iu(c3r + cg) V = iu(qx + cs) . (8) 
For equations CNLS(B) the generators are given by 

X = C I X  + 2 ~ 3 t  + ~4 T = 2cit + cz 
U = ( i q r  + ic5 - c1 + 2imclt + iffcz)u 
V = ( iqx  + i y  - c1 - Ziaquclt - iwz)u 

(9) 

where cj in (8) and (9) are constants. Setting a = 0 in (9) we obtain the corresponding 
results for equations CNLS@) (see [6]). 

Case (ii). 
is 

For this case we state that only one proper Lie-Backlund symmetry exists which 

a a 
a u  a i  (GuEu, + ~ u V U ,  + ~ I J S U ,  + Z U ~ ~ . ~ ) -  + (~uCE, 4- 3iuU, + 3vi?i, + Zi.&)- 

a 
a v  
a 
av  

+(GUUU, + ~ v U U ,  + ~ u E v ,  + 2 ~ ~ ~ ) -  

+ ( 6 ~ f i &  + 3JuiiX + ~ u E &  + Zi&)- . (10) 

All four parts of the equation admit the above symmetry. The remaining symmetries are 
equivalent to Lie point symmetries. We can therefore give them in the form (3). For 
equations cNLs(A) the generators of the Lie point transformations are given by 

X = C ~ X  +ZC$ + ~ 4  T = 2 ~ 1 2  +CZ 

+ icssin2yt + ic7cos2yt 
iC$C6 - c1 +Ziaclt + - 
Y 2  

1 Y Y .ff . f f  +-qsinZyt - -cscos2yt - 1-cssin2yt - i-c7cosZyt U B LJ B B 

icssin2yt - ic7cos2yt ic3x + iq -  - cI - Zioclt - - - LJ2 iff,& 
Y 2  Y 2  

iffpca + Zipclt - - 
Y 2  

1 Y Y . f f  a 
+-c8cosZyr - -c7sinZyt - i-cssin2yt - i-qcos2yi U B LJ B B 
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where y = m. In order to obtain the desired results for equations CNLS(C) we 
simply set ct = 0 in (1 1). To derive the transformations (1 1) we have assumed that 6 # 0. 
Therefore, we cannot obtain the corresponding results for equations m s ( B )  and CNLS(D) 
from (11). 

For equations CNLS(B) we get the transformations 

X = c1x + 2c3f + c4 
U = (ic3x + ics - cI +2iaclt)u + (c7 + ics)en"u 
v = (ic3.x + icg - cI - 2iaclt)u + (-c7 + ics)e-ziu'u. 

T = 2clt + c2 

(12) 

Setting cr = 0 in (12) we obtain the corresponding generators for equations CNLS(D) (see 
W1). 

3. Similarity solutions 

We now solve the characteristics quitions 

which enable us to obtain the similarity transformations which reduce the CNLS into a system 
of ordinary differential equations. We shall present only the results for CNLS(B) in the case 
where h # 1. In a similar manner the corresponding similarity solutions for the remaining 
CNLS equations may be obtained. The analysis is more complicated in the cases where the 
generators are given by (11) and (12). 

The first equality in (13) give a solution of the form q(x ,  t )  = constant, where q will 
be the independent variable of the resulting ordinary differential equations. Although the 
general solution to this linear equation may be found formally, it is better to analyse the 
various possibilities separately. W e  therefore split the analysis into five exclusive cases:(i) 
c ,  = c j  = 0, cz # 0, (ii) c1 = c2 = 0, (iii) CI = 0, C.J + 0, (iv) c1 # 0, c3 = 0 and (v) 
C I  # 0, c3 # 0. 

Case (i). 
into (13) gives 

We take c1 = cz = 0, q/cZ = ZC, cs/cz = yl, cs/cz = M. Substitution of (9) 

Solving the above equations, we obtain q = x - 2ct and 

U = iF(q)exp[i[(y, + a)t + cq + 811) 
U = iC(q)exp(iKy~ - ct)t + crl + 821) 

where we assume that the functions F and C are real and 81 and 62 are real constants. 
Upon substituting this similarity solution into CNLS@) we get 

F" - ( F 2  f hG2 + c2 - k l )F  = 0 
G" - (G2 + h F Z  + C* - k2)G = 0 

The above system of ordinary differential equations also arises for CNLS(D) [6] and has 
been studied numerically by Parker and Sophocleous [7. SI. 
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Case.(ii). Since the parameter a disappears from (9), the similarity solution is expected to 
be the same as for CNLS(D). If c3 # 0, there is no loss of generality in shifting the origin 
to take c4 = 0. The corresponding equations (13) give the solution q = t and 

U = F(r7)exp(i[af-1(x+yl)z+Sllnf +&I} 
U =G(q)exp(i[at- ' (x+~)~+S3lnr+S4]]  

iF '+ $-lF + (-S1q-' + F I ' +  hGG +a)F = 0 
i C ' + 4 i f l - ' G + ( - ~ ~ ~ - ' + G G + h F E : - a ) G = O .  

where y~ = cg/c3, y2 = C G / C ~  which reduces the W(B)  into 

The assumption that the functions F(q) and G(q) are real gives easily the general solution 
for the above system and consequently we have a solution for the CNLs(B). 

Now, if we take c3 = 0 we obtain the similarity solution q = t and 
'U = F(q)exp[i(ylx +'&f + Sz)] 
where yi = c5/c4. yz = Cg/C4 which transforms the CNLS(B) into 

~ U = G(v)exp[i(yzx + S3t + 8411 

iF'+ (FE:+ hGG +a - 8 1  - y:)F'=O 
iG'+ (GG + h F F  -a - 83 - y;)G = 0 .  

Case (iii}. 
Cg/C2 = y2. In this case we obtain the similarity solution 7 = x - ctZ and 

Without loss of generality we take c4 = 0 and set c~Jc:!  = c ,  cs/cz = y~ and 

U = F(q)exp[i(cxr- sc 2 2 3  f + ylt + at)] 

U = G(q)exp[i(cxt - $c2r3 + yzf -a t ) ]  
which reduces the CNLS(B) into the system 

~~~ ~ 

F"+ (FE:+ hGG -cq - yl)F 
G"+ (GG + h F F  - Cq - n ) G  = O .  

0 
.~ 

Case (iv). Without loss of generality we take cz = c4 = 0 and set cs/cI = yI and 
cg/c] = yz. The desired,similarity solution is given by q = x / f i  and 

1 

1 

U =  -F(q)exp[i($yllnt+at +$$+SI)] 

U = -G(n)exp[i(iy2lnt - af + $q? + SZ)] 

f i  

f i  
which transforms the CNLS(B)~ into 

F " + ( F P $ h G G + $ ~ 2 - $ ~ ~  -zl)F=O I. 

G " + ( G G + h F F + $ r ~ ~ - i y 2 - $ i ) G = 0  

Case (v). 
c g / q  = y2. The similarity solution is given by 7 = x - ct / f i  and 

Similarly as in case (iv) we take cz = c4 = 0. C ~ / C I  = c /2 ,  C5/c1 = yI and 

1 

1 

U = - F ( r l ) e x p [ i ( ~ c x - 4 ~ * t + ~ y l l n t + a t + $ ~ ~ + S 1 ) ]  

U = -G(q)exp[i($cx - $c2f + 4yzlnt - at + Qv2 + Sz)] 

f i  

f i  
which reduces the CNLS(B) into the same system of ordinary differential equations which 
was obtained in case (iv). 
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4. Remarks 

The procedure which we have used to obtain the in6nitesimal transformations (8) and (9) 
is known as Lie clarsicul method 1911 Bluman and Cole [lo] proposed a generalization of 
the Lie method which is known as non-classical method. A further generalization of the 
latter method is presented by Olver and Rosenau [11,12]. Recently, Clarkson and Krnskal 
[13] introduced a direct method for finding similarity solutions without using transformation 
group theory. Originally this method seemed to produce results that could not be obtained 
by any other method, but later it appeared that this is not the case [ 14-16]. The same results 
can be obtained by the non-classical method. In fact, the non-classical method of Bluman 
and Cole is more general than the direct method of Clarkson and Kruskal. 

The objective of these new methods is to derive symmetries which cannot be obtained 
by the classical method. We state that for the CNLS (1) the non-classical method only 
produces the infinitesimal transformations (8) and (9). We also state that if 01 and +6 in CNLS 
(1) are functions of x and f ,  symmetry (IO) is the only proper Lie-Bkklund symmetry 
admitted by CNLS (1). 

The author would like to thank the SERC (UK) for financial support. 

References 

[I] Zakhav V E and Schulman E I 1982 Physica 4D 270 
[2] Mannaltov S V 1974 SOY. Phys.JEIP 38 248 
[31 Trill0 S, WabniQ S, Wright E M  and Stegeman G I 1989 Opt. C o m u n  70 166 
[4] Bluman G W and Kumei S 1989 Symmerries and Diferential Equarionr (New York Springer) 
[5] H e m  A C 1991 REDUCE Usen' Manual Version 3.4 (Sann Monica, C A  Rand Corporation) 
[6] Parker D F 1987 Pmc. 4th Meetins on Wows and Stabili@ in Continuous Media ed A Donto  and S Giambo 

I71 Parker D F and Sophocleous C 1993 Future Directions in Physical and Biologicnl Systemr ed P L CMstiansen 

[8] Sophocleous C and Parker D F submilted 
[9] Lie S 189 1 Vo'orlesrmgen iiber Di~~,~ntialgleichungen mi? Bekannten Injtesimalen Tronsformotionen Tueber 

~~ Cosenro p 261 

ez a1 (New York Plenum) p 413 

Leipzig: Reprinted 1967 (New York: Chelsea) 
[IO] Bluman G W and Cole J D 1969 J. Mech. 18 1025 
[Ill Olver P J and Rosenou P 1986 Phyz Left. 114A 107 
[I21 Olver P J and Rosenau P 1987 SIAM J. Appl. Math 47 263 
[13] Clarkson P A  and Kmskal M D 1989 J. Math. Phys. 30 2201 
[I41 Nucci M C and Clarkson P A 1992 Phys. Lett. 164 49 
[IS] Pucci E 1992 1. Phys. A: Mark Gen. 25 2631 
I161 Amgo D I, Broadbridge P and Hill J M 1993 J. Mark Phys. 34 4692 , 


